The Continuous Dual of a Normed Space is Complete

Measurement on a normed vector space

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

Definition [edit]

Let X {\displaystyle X} be a normed vector space with norm {\displaystyle \|\cdot \|} and let X {\displaystyle X^{*}} denote its continuous dual space. The dual norm of a continuous linear functional f {\displaystyle f} belonging to X {\displaystyle X^{*}} is the non-negative real number defined[1] by any of the following equivalent formulas:

f = sup { | f ( x ) | : x 1  and x X } = sup { | f ( x ) | : x < 1  and x X } = inf { c [ 0 , ) : | f ( x ) | c x  for all x X } = sup { | f ( x ) | : x = 1  or 0  and x X } = sup { | f ( x ) | : x = 1  and x X }  this equality holds if and only if X { 0 } = sup { | f ( x ) | x : x 0  and x X }  this equality holds if and only if X { 0 } {\displaystyle {\begin{alignedat}{5}\|f\|&=\sup &&\{\,|f(x)|&&~:~\|x\|\leq 1~&&~{\text{ and }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|<1~&&~{\text{ and }}~&&x\in X\}\\&=\inf &&\{\,c\in [0,\infty )&&~:~|f(x)|\leq c\|x\|~&&~{\text{ for all }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|=1{\text{ or }}0~&&~{\text{ and }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|=1~&&~{\text{ and }}~&&x\in X\}\;\;\;{\text{ this equality holds if and only if }}X\neq \{0\}\\&=\sup &&{\bigg \{}\,{\frac {|f(x)|}{\|x\|}}~&&~:~x\neq 0&&~{\text{ and }}~&&x\in X{\bigg \}}\;\;\;{\text{ this equality holds if and only if }}X\neq \{0\}\\\end{alignedat}}}

where sup {\displaystyle \sup } and inf {\displaystyle \inf } denote the supremum and infimum, respectively. The constant 0 {\displaystyle 0} map is the origin of the vector space X {\displaystyle X^{*}} and it always has norm 0 = 0. {\displaystyle \|0\|=0.} If X = { 0 } {\displaystyle X=\{0\}} then the only linear functional on X {\displaystyle X} is the constant 0 {\displaystyle 0} map and moreover, the sets in the last two rows will both be empty and consequently, their supremums will equal sup = {\displaystyle \sup \varnothing =-\infty } instead of the correct value of 0. {\displaystyle 0.}

The map f f {\displaystyle f\mapsto \|f\|} defines a norm on X . {\displaystyle X^{*}.} (See Theorems 1 and 2 below.)

The dual norm is a special case of the operator norm defined for each (bounded) linear map between normed vector spaces.

The topology on X {\displaystyle X^{*}} induced by {\displaystyle \|\cdot \|} turns out to be as strong as the weak-* topology on X . {\displaystyle X^{*}.}

If the ground field of X {\displaystyle X} is complete then X {\displaystyle X^{*}} is a Banach space.

The double dual of a normed linear space [edit]

The double dual (or second dual) X {\displaystyle X^{**}} of X {\displaystyle X} is the dual of the normed vector space X {\displaystyle X^{*}} . There is a natural map φ : X X {\displaystyle \varphi :X\to X^{**}} . Indeed, for each w {\displaystyle w^{*}} in X {\displaystyle X^{*}} define

φ ( v ) ( w ) := w ( v ) . {\displaystyle \varphi (v)(w^{*}):=w^{*}(v).}

The map φ {\displaystyle \varphi } is linear, injective, and distance preserving.[2] In particular, if X {\displaystyle X} is complete (i.e. a Banach space), then φ {\displaystyle \varphi } is an isometry onto a closed subspace of X {\displaystyle X^{**}} .[3]

In general, the map φ {\displaystyle \varphi } is not surjective. For example, if X {\displaystyle X} is the Banach space L {\displaystyle L^{\infty }} consisting of bounded functions on the real line with the supremum norm, then the map φ {\displaystyle \varphi } is not surjective. (See L p {\displaystyle L^{p}} space). If φ {\displaystyle \varphi } is surjective, then X {\displaystyle X} is said to be a reflexive Banach space. If 1 < p < , {\displaystyle 1<p<\infty ,} then the space L p {\displaystyle L^{p}} is a reflexive Banach space.

Examples [edit]

Dual norm for matrices [edit]

The Frobenius norm defined by

A F = i = 1 m j = 1 n | a i j | 2 = trace ( A A ) = i = 1 min { m , n } σ i 2 {\displaystyle \|A\|_{\text{F}}={\sqrt {\sum _{i=1}^{m}\sum _{j=1}^{n}\left|a_{ij}\right|^{2}}}={\sqrt {\operatorname {trace} (A^{*}A)}}={\sqrt {\sum _{i=1}^{\min\{m,n\}}\sigma _{i}^{2}}}}

is self-dual, i.e., its dual norm is F = F . {\displaystyle \|\cdot \|'_{\text{F}}=\|\cdot \|_{\text{F}}.}

The spectral norm , a special case of the induced norm when p = 2 {\displaystyle p=2} , is defined by the maximum singular values of a matrix, that is,

A 2 = σ max ( A ) , {\displaystyle \|A\|_{2}=\sigma _{\max }(A),}

has the nuclear norm as its dual norm, which is defined by

B 2 = i σ i ( B ) , {\displaystyle \|B\|'_{2}=\sum _{i}\sigma _{i}(B),}

for any matrix B {\displaystyle B} where σ i ( B ) {\displaystyle \sigma _{i}(B)} denote the singular values[ citation needed ].

If p , q [ 1 , ] {\displaystyle p,q\in [1,\infty ]} the Schatten p {\displaystyle \ell ^{p}} -norm on matrices is dual to the Schatten q {\displaystyle \ell ^{q}} -norm.

Finite-dimensional spaces [edit]

Let {\displaystyle \|\cdot \|} be a norm on R n . {\displaystyle \mathbb {R} ^{n}.} The associated dual norm, denoted , {\displaystyle \|\cdot \|_{*},} is defined as

z = sup { z x : x 1 } . {\displaystyle \|z\|_{*}=\sup\{z^{\intercal }x:\|x\|\leq 1\}.}

(This can be shown to be a norm.) The dual norm can be interpreted as the operator norm of z , {\displaystyle z^{\intercal },} interpreted as a 1 × n {\displaystyle 1\times n} matrix, with the norm {\displaystyle \|\cdot \|} on R n {\displaystyle \mathbb {R} ^{n}} , and the absolute value on R {\displaystyle \mathbb {R} } :

z = sup { | z x | : x 1 } . {\displaystyle \|z\|_{*}=\sup\{|z^{\intercal }x|:\|x\|\leq 1\}.}

From the definition of dual norm we have the inequality

z x = x ( z x x ) x z {\displaystyle z^{\intercal }x=\|x\|\left(z^{\intercal }{\frac {x}{\|x\|}}\right)\leq \|x\|\|z\|_{*}}

which holds for all x {\displaystyle x} and z . {\displaystyle z.} [4] The dual of the dual norm is the original norm: we have x = x {\displaystyle \|x\|_{**}=\|x\|} for all x . {\displaystyle x.} (This need not hold in infinite-dimensional vector spaces.)

The dual of the Euclidean norm is the Euclidean norm, since

sup { z x : x 2 1 } = z 2 . {\displaystyle \sup\{z^{\intercal }x:\|x\|_{2}\leq 1\}=\|z\|_{2}.}

(This follows from the Cauchy–Schwarz inequality; for nonzero z , {\displaystyle z,} the value of x {\displaystyle x} that maximises z x {\displaystyle z^{\intercal }x} over x 2 1 {\displaystyle \|x\|_{2}\leq 1} is z z 2 . {\displaystyle {\tfrac {z}{\|z\|_{2}}}.} )

The dual of the {\displaystyle \ell ^{\infty }} -norm is the 1 {\displaystyle \ell ^{1}} -norm:

sup { z x : x 1 } = i = 1 n | z i | = z 1 , {\displaystyle \sup\{z^{\intercal }x:\|x\|_{\infty }\leq 1\}=\sum _{i=1}^{n}|z_{i}|=\|z\|_{1},}

and the dual of the 1 {\displaystyle \ell ^{1}} -norm is the {\displaystyle \ell ^{\infty }} -norm.

More generally, Hölder's inequality shows that the dual of the p {\displaystyle \ell ^{p}} -norm is the q {\displaystyle \ell ^{q}} -norm, where q {\displaystyle q} satisfies 1 p + 1 q = 1 , {\displaystyle {\tfrac {1}{p}}+{\tfrac {1}{q}}=1,} that is, q = p p 1 . {\displaystyle q={\tfrac {p}{p-1}}.}

As another example, consider the 2 {\displaystyle \ell ^{2}} - or spectral norm on R m × n {\displaystyle \mathbb {R} ^{m\times n}} . The associated dual norm is

Z 2 = sup { t r ( Z X ) : X 2 1 } , {\displaystyle \|Z\|_{2*}=\sup\{\mathbf {tr} (Z^{\intercal }X):\|X\|_{2}\leq 1\},}

which turns out to be the sum of the singular values,

Z 2 = σ 1 ( Z ) + + σ r ( Z ) = t r ( Z Z ) , {\displaystyle \|Z\|_{2*}=\sigma _{1}(Z)+\cdots +\sigma _{r}(Z)=\mathbf {tr} ({\sqrt {Z^{\intercal }Z}}),}

where r = r a n k Z . {\displaystyle r=\mathbf {rank} Z.} This norm is sometimes called the nuclear norm .[5]

Lp and ℓ p spaces [edit]

For p [ 1 , ] , {\displaystyle p\in [1,\infty ],} p-norm (also called p {\displaystyle \ell _{p}} -norm) of vector x = ( x n ) n {\displaystyle \mathbf {x} =(x_{n})_{n}} is

x p := ( i = 1 n | x i | p ) 1 / p . {\displaystyle \|\mathbf {x} \|_{p}~:=~\left(\sum _{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1/p}.}

If p , q [ 1 , ] {\displaystyle p,q\in [1,\infty ]} satisfy 1 / p + 1 / q = 1 {\displaystyle 1/p+1/q=1} then the q {\displaystyle \ell ^{q}} and q {\displaystyle \ell ^{q}} norms are dual to each other and the same is true of the L q {\displaystyle L^{q}} and L q {\displaystyle L^{q}} norms, where ( X , Σ , μ ) , {\displaystyle (X,\Sigma ,\mu ),} is some measure space. In particular the Euclidean norm is self-dual since p = q = 2. {\displaystyle p=q=2.} For x T Q x {\displaystyle {\sqrt {x^{\mathrm {T} }Qx}}} , the dual norm is y T Q 1 y {\displaystyle {\sqrt {y^{\mathrm {T} }Q^{-1}y}}} with Q {\displaystyle Q} positive definite.

For p = 2 , {\displaystyle p=2,} the 2 {\displaystyle \|\,\cdot \,\|_{2}} -norm is even induced by a canonical inner product , , {\displaystyle \langle \,\cdot ,\,\cdot \rangle ,} meaning that x 2 = x , x {\displaystyle \|\mathbf {x} \|_{2}={\sqrt {\langle \mathbf {x} ,\mathbf {x} \rangle }}} for all vectors x . {\displaystyle \mathbf {x} .} This inner product can expressed in terms of the norm by using the polarization identity. On 2 , {\displaystyle \ell ^{2},} this is the Euclidean inner product defined by

( x n ) n , ( y n ) n 2 = n x n y n ¯ {\displaystyle \langle \left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\rangle _{\ell ^{2}}~=~\sum _{n}x_{n}{\overline {y_{n}}}}

while for the space L 2 ( X , μ ) {\displaystyle L^{2}(X,\mu )} associated with a measure space ( X , Σ , μ ) , {\displaystyle (X,\Sigma ,\mu ),} which consists of all square-integrable functions, this inner product is

f , g L 2 = X f ( x ) g ( x ) ¯ d x . {\displaystyle \langle f,g\rangle _{L^{2}}=\int _{X}f(x){\overline {g(x)}}\,\mathrm {d} x.}

The norms of the continuous dual spaces of 2 {\displaystyle \ell ^{2}} and 2 {\displaystyle \ell ^{2}} satisfy the polarization identity, and so these dual norms can be used to define inner products. With this inner product, this dual space is also a Hilbert spaces.

Properties [edit]

More generally, let X {\displaystyle X} and Y {\displaystyle Y} be topological vector spaces and let L ( X , Y ) {\displaystyle L(X,Y)} [6] be the collection of all bounded linear mappings (or operators) of X {\displaystyle X} into Y . {\displaystyle Y.} In the case where X {\displaystyle X} and Y {\displaystyle Y} are normed vector spaces, L ( X , Y ) {\displaystyle L(X,Y)} can be given a canonical norm.

Theorem 1  —Let X {\displaystyle X} and Y {\displaystyle Y} be normed spaces. Assigning to each continuous linear operator f L ( X , Y ) {\displaystyle f\in L(X,Y)} the scalar

f = sup { f ( x ) : x X , x 1 } {\displaystyle \|f\|=\sup\{\|f(x)\|:x\in X,\|x\|\leq 1\}}

defines a norm : L ( X , Y ) R {\displaystyle \|\cdot \|~:~L(X,Y)\to \mathbb {R} } on L ( X , Y ) {\displaystyle L(X,Y)} that makes L ( X , Y ) {\displaystyle L(X,Y)} into a normed space. Moreover, if Y {\displaystyle Y} is a Banach space then so is L ( X , Y ) . {\displaystyle L(X,Y).} [7]

Proof

A subset of a normed space is bounded if and only if it lies in some multiple of the unit sphere; thus f < {\displaystyle \|f\|<\infty } for every f L ( X , Y ) {\displaystyle f\in L(X,Y)} if α {\displaystyle \alpha } is a scalar, then ( α f ) ( x ) = α f x {\displaystyle (\alpha f)(x)=\alpha \cdot fx} so that

α f = | α | f . {\displaystyle \|\alpha f\|=|\alpha |\|f\|.}

The triangle inequality in Y {\displaystyle Y} shows that

( f 1 + f 2 ) x = f 1 x + f 2 x f 1 x + f 2 x ( f 1 + f 2 ) x f 1 + f 2 {\displaystyle {\begin{aligned}\|\left(f_{1}+f_{2}\right)x\|~&=~\|f_{1}x+f_{2}x\|\\&\leq ~\|f_{1}x\|+\|f_{2}x\|\\&\leq ~\left(\|f_{1}\|+\|f_{2}\|\right)\|x\|\\&\leq ~\|f_{1}\|+\|f_{2}\|\end{aligned}}}

for every x X {\displaystyle x\in X} satisfying x 1. {\displaystyle \|x\|\leq 1.} This fact together with the definition of : L ( X , Y ) R {\displaystyle \|\cdot \|~:~L(X,Y)\to \mathbb {R} } implies the triangle inequality:

f + g f + g . {\displaystyle \|f+g\|\leq \|f\|+\|g\|.}

Since { | f ( x ) | : x X , x 1 } {\displaystyle \{|f(x)|:x\in X,\|x\|\leq 1\}} is a non-empty set of non-negative real numbers, f = sup { | f ( x ) | : x X , x 1 } {\displaystyle \|f\|=\sup \left\{|f(x)|:x\in X,\|x\|\leq 1\right\}} is a non-negative real number. If f 0 {\displaystyle f\neq 0} then f x 0 0 {\displaystyle fx_{0}\neq 0} for some x 0 X , {\displaystyle x_{0}\in X,} which implies that f x 0 > 0 {\displaystyle \left\|fx_{0}\right\|>0} and consequently f > 0. {\displaystyle \|f\|>0.} This shows that ( L ( X , Y ) , ) {\displaystyle \left(L(X,Y),\|\cdot \|\right)} is a normed space.[8]

Assume now that Y {\displaystyle Y} is complete and we will show that ( L ( X , Y ) , ) {\displaystyle (L(X,Y),\|\cdot \|)} is complete. Let f = ( f n ) n = 1 {\displaystyle f_{\bullet }=\left(f_{n}\right)_{n=1}^{\infty }} be a Cauchy sequence in L ( X , Y ) , {\displaystyle L(X,Y),} so by definition f n f m 0 {\displaystyle \left\|f_{n}-f_{m}\right\|\to 0} as n , m . {\displaystyle n,m\to \infty .} This fact together with the relation

f n x f m x = ( f n f m ) x f n f m x {\displaystyle \left\|f_{n}x-f_{m}x\right\|=\left\|\left(f_{n}-f_{m}\right)x\right\|\leq \left\|f_{n}-f_{m}\right\|\|x\|}

implies that ( f n x ) n = 1 {\displaystyle \left(f_{n}x\right)_{n=1}^{\infty }} is a Cauchy sequence in Y {\displaystyle Y} for every x X . {\displaystyle x\in X.} It follows that for every x X , {\displaystyle x\in X,} the limit lim n f n x {\displaystyle \lim _{n\to \infty }f_{n}x} exists in Y {\displaystyle Y} and so we will denote this (necessarily unique) limit by f x , {\displaystyle fx,} that is:

f x = lim n f n x . {\displaystyle fx~=~\lim _{n\to \infty }f_{n}x.}

It can be shown that f : X Y {\displaystyle f:X\to Y} is linear. If ε > 0 {\displaystyle \varepsilon >0} , then f n f m x ε x {\displaystyle \left\|f_{n}-f_{m}\right\|\|x\|~\leq ~\varepsilon \|x\|} for all sufficiently large integers n and m. It follows that

f x f m x ε x {\displaystyle \left\|fx-f_{m}x\right\|~\leq ~\varepsilon \|x\|}

for sufficiently all large m . {\displaystyle m.} Hence f x ( f m + ε ) x , {\displaystyle \|fx\|\leq \left(\left\|f_{m}\right\|+\varepsilon \right)\|x\|,} so that f L ( X , Y ) {\displaystyle f\in L(X,Y)} and f f m ε . {\displaystyle \left\|f-f_{m}\right\|\leq \varepsilon .} This shows that f m f {\displaystyle f_{m}\to f} in the norm topology of L ( X , Y ) . {\displaystyle L(X,Y).} This establishes the completeness of L ( X , Y ) . {\displaystyle L(X,Y).} [9]

When Y {\displaystyle Y} is a scalar field (i.e. Y = C {\displaystyle Y=\mathbb {C} } or Y = R {\displaystyle Y=\mathbb {R} } ) so that L ( X , Y ) {\displaystyle L(X,Y)} is the dual space X {\displaystyle X^{*}} of X {\displaystyle X} .

Theorem 2  —Let X {\displaystyle X} be a normed space and for every x X {\displaystyle x^{*}\in X^{*}} let

x := sup { | x , x | : x X  with x 1 } {\displaystyle \left\|x^{*}\right\|~:=~\sup \left\{|\langle x,x^{*}\rangle |~:~x\in X{\text{ with }}\|x\|\leq 1\right\}}

where by definition x , x := x ( x ) {\displaystyle \langle x,x^{*}\rangle ~:=~x^{*}(x)} is a scalar. Then

  1. : X R {\displaystyle \|\,\cdot \,\|:X^{*}\to \mathbb {R} } is a norm that makes X {\displaystyle X^{*}} a Banach space.[10]
  2. If B {\displaystyle B^{*}} is the closed unit ball of X {\displaystyle X^{*}} then for every x X , {\displaystyle x\in X,}

    x = sup { | x , x | : x B } = sup { | x ( x ) | : x 1  with x X } . {\displaystyle {\begin{alignedat}{4}\|x\|~&=~\sup \left\{|\langle x,x^{*}\rangle |~:~x^{*}\in B^{*}\right\}\\&=~\sup \left\{\left|x^{*}(x)\right|~:~\left\|x^{*}\right\|\leq 1{\text{ with }}x^{*}\in X^{*}\right\}.\\\end{alignedat}}}

    Consequently, x x , x {\displaystyle x^{*}\mapsto \langle x,x^{*}\rangle } is a bounded linear functional on X {\displaystyle X^{*}} with norm x = x . {\displaystyle \|x^{*}\|~=~\|x\|.}
  3. B {\displaystyle B^{*}} is weak*-compact.

Proof

Let B = sup { x X : x 1 } {\displaystyle B~=~\sup\{x\in X~:~\|x\|\leq 1\}} denote the closed unit ball of a normed space X . {\displaystyle X.} When Y {\displaystyle Y} is the scalar field then L ( X , Y ) = X {\displaystyle L(X,Y)=X^{*}} so part (a) is a corollary of Theorem 1. Fix x X . {\displaystyle x\in X.} There exists[11] y B {\displaystyle y^{*}\in B^{*}} such that

x , y = x . {\displaystyle \langle {x,y^{*}}\rangle =\|x\|.}

but,

| x , x | x x x {\displaystyle |\langle {x,x^{*}}\rangle |\leq \|x\|\|x^{*}\|\leq \|x\|}

for every x B {\displaystyle x^{*}\in B^{*}} . (b) follows from the above. Since the open unit ball U {\displaystyle U} of X {\displaystyle X} is dense in B {\displaystyle B} , the definition of x {\displaystyle \|x^{*}\|} shows that x B {\displaystyle x^{*}\in B^{*}} if and only if | x , x | 1 {\displaystyle |\langle {x,x^{*}}\rangle |\leq 1} for every x U {\displaystyle x\in U} . The proof for (c)[12] now follows directly.[13]

See also [edit]

  • Convex conjugate
  • Hölder's inequality – Inequality between integrals in Lp spaces
  • Lp space – Function spaces generalizing finite-dimensional p norm spaces
  • Operator norm – Measure of the "size" of linear operators
  • Polarization identity – Formula relating the norm and the inner product in a inner product space

Notes [edit]

  1. ^ Rudin 1991, p. 87
  2. ^ Rudin 1991, section 4.5, p. 95
  3. ^ Rudin 1991, p. 95
  4. ^ This inequality is tight, in the following sense: for any x {\displaystyle x} there is a z {\displaystyle z} for which the inequality holds with equality. (Similarly, for any z {\displaystyle z} there is an x {\displaystyle x} that gives equality.)
  5. ^ Boyd & Vandenberghe 2004, p. 637
  6. ^ Each L ( X , Y ) {\displaystyle L(X,Y)} is a vector space, with the usual definitions of addition and scalar multiplication of functions; this only depends on the vector space structure of Y {\displaystyle Y} , not X {\displaystyle X} .
  7. ^ Rudin 1991, p. 92
  8. ^ Rudin 1991, p. 93
  9. ^ Rudin 1991, p. 93
  10. ^ Aliprantis 2006, p. 230 harvnb error: no target: CITEREFAliprantis2006 (help)
  11. ^ Rudin 1991, Theorem 3.3 Corollary, p. 59
  12. ^ Rudin 1991, Theorem 3.15 The Banach–Alaoglu theorem algorithm, p. 68
  13. ^ Rudin 1991, p. 94

References [edit]

  • Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide (3rd ed.). Springer. ISBN9783540326960.
  • Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge University Press. ISBN9780521833783.
  • Kolmogorov, A.N.; Fomin, S.V. (1957). Elements of the Theory of Functions and Functional Analysis, Volume 1: Metric and Normed Spaces. Rochester: Graylock Press.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN978-1584888666. OCLC 144216834.
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN978-0-07-054236-5. OCLC 21163277.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN978-0-486-45352-1. OCLC 853623322.

External links [edit]

  • Notes on the proximal mapping by Lieven Vandenberge

heardneet1968.blogspot.com

Source: https://en.wikipedia.org/wiki/Dual_norm

0 Response to "The Continuous Dual of a Normed Space is Complete"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel